Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biochem ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669682

RESUMO

Analogs of pyrrole alkaloid lamellarins exhibit anticancer activity by modulating multiple cellular events. Lethal doses of several lamellarins were found to enhance autophagy flux in HeLa cells, suggesting that lamellarins may modulate protein homeostasis through the interference of proteins or kinases controlling energy and nutrient metabolism. To further delineate molecular mechanisms and their targets, our results herein show that azalamellarin D (AzaD) cytotoxicity could cause translational attenuation, as indicated by a change in eIF2α phosphorylation. Intriguingly, acute AzaD treatment promoted the phosphorylation of GCN2, a kinase that transduces the integrated stress response (ISR), and prolonged exposure to AzaD could increase the levels of the phosphorylated forms of eIF2α and the other ISR kinase PKR. However, the effects of AzaD on ISR signaling were marginally abrogated in cells with genetic deletion of GCN2 and PKR, and evaluation of protein target engagement by CETSA revealed no significant interaction between AzaD and ISR kinases. Further investigation revealed that acute AzaD treatment negatively affected mTOR phosphorylation and signaling. The analyses by CETSA and computational modeling indicated that mTOR may be a possible protein target for AzaD. These findings indicate the potential for developing lamellarins as novel agents for cancer treatment.

2.
Mol Cell Biochem ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851175

RESUMO

The endoplasmic reticulum (ER) membrane provides infrastructure for intracellular signaling, protein degradation, and communication among the ER lumen, cytosol, and nucleus via transmembrane and membrane-associated proteins. Failure to maintain homeostasis at the ER leads to deleterious conditions in humans, such as protein misfolding-related diseases and neurodegeneration. The ER transmembrane heat shock protein 40 (Hsp40) proteins, including DNAJB12 (JB12) and DNAJB14 (JB14), have been studied for their importance in multiple aspects of cellular events, including degradation of misfolded membrane proteins, proteasome-mediated control of proapoptotic Bcl-2 members, and assembly of multimeric ion channels. This study elucidates a novel facet of JB12 and JB14 in that their expression could be regulated in response to stress caused by the presence of ER stressors and the mitochondrial potential uncoupler CCCP. Furthermore, JB14 overexpression could affect the level of PTEN-induced kinase 1 (PINK1) expression under CCCP-mediated stress. Cells with genetic knockout (KO) of DNAJB12 and DNAJB14 exhibited an altered kinetic of phosphorylated Drp1 in response to the stress caused by CCCP treatment. Surprisingly, JB14-KO cells exhibited a prolonged stabilization of PINK1 during chronic exposure to CCCP. Cells depleted with JB12 or JB14 also revealed an increase in the mitochondrial count and branching. Hence, this study indicates the possible novel functions of JB12 and JB14 involving mitochondria in nonstress conditions and under stress caused by CCCP.

3.
Neurochem Res ; 47(9): 2568-2579, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33713326

RESUMO

Diabetes mellitus (DM), one of metabolic diseases, has been suggested as a risk factor for Alzheimer's disease (AD). However, how the metabolic pathway activates amyloid precursor protein (APP) processing enzymes then contributes to the increase of amyloid-beta (Aß) production, is not clearly understood. In the present study, we aimed to examine the protective effect of melatonin against hyperglycemia-induced alterations in the amyloidogenic pathway. High concentration of glucose was used to induce hyperglycemia in human neuroblastoma SH-SY5Y cells. We found that 30 mM glucose affected the expression of insulin receptors and glucose transporters, which indicated the disruption of glucose sensing. High glucose induced the activation of the phosphorylated protein kinase B (pAkt)/GSK-3ß signaling pathway and a significant increase in the expression of ß-site beta APP cleaving enzyme (BACE1), presenilin1 (PS1) and Aß42. Pretreatment with melatonin significantly reversed these parameters. We also showed that these effects are similar to those effects in the presence of the GSK-3ß blocker, N-(4-methoxybenyl)-N'-(5-nitro-1,3-thiazol-2-yl) urea (ARA) in glucose-treated hyperglycemic cells. These suggested that melatonin exerted an inhibitory effect on the activation of APP-cleaving enzymes via the GSK-3ß signaling pathway. Pretreatment with luzindole, a melatonin receptor MT1 antagonist, significantly prevented the effect of melatonin on the glucose-induced increase level of APP processing enzymes. This suggested that melatonin attenuated the toxic effect on hyperglycemia involving the amyloidogenic pathway partially mediated via melatonin receptor. Taken together the present results suggested that melatonin has a beneficial role in preventing Aß generation in a cellular model of hyperglycemia-induced DM.


Assuntos
Doença de Alzheimer , Hiperglicemia , Melatonina , Neuroblastoma , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular Tumoral , Glucose/toxicidade , Glicogênio Sintase Quinase 3 beta , Humanos , Hiperglicemia/tratamento farmacológico , Melatonina/farmacologia , Neuroblastoma/metabolismo , Receptores de Melatonina/metabolismo
4.
ChemMedChem ; 17(3): e202100637, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34784449

RESUMO

Arylsulfonamides are ubiquitous in a number of anticancer agents, and fluorine substitution on aromatic rings often improves drug profile. Herein, a series of novel pentafluorobenzenesulfonamide derivatives with different molecular scaffolds were readily synthesized and assessed for their antitumor activities against multiple cancer cell lines, including A549, HepG2, HuCCA-1, and MOLT-3. Dihydroimidazoline-containing analogue and its Diels-Alder cycloadducts exhibited enhanced cytotoxicity at micromolar range while the incorporation of other heterocyclic cores via nucleophilic substitution reaction resulted in diminished potency. Selected analogues were shown to induce the accumulation of cleaved forms of Casp-9, Casp-7 and PARP in cancer cells, indicating intrinsic apoptosis via a caspase-dependent process.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fluorbenzenos/farmacologia , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fluorbenzenos/síntese química , Fluorbenzenos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
5.
Toxicology ; 462: 152963, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34560126

RESUMO

As a promising class of bioactive marine pyrrole alkaloids, lamellarins reportedly act on multiple targets to suppress the vitality of various cancer cell lines. Nevertheless, an in-depth understanding of the molecular mechanisms governing their cytotoxicity is still in demand. Here we report that while activating intrinsic apoptosis, up to 5 µM of lamellarins and their lactam-containing analogs, azalamellarins, also induced mitochondrial stress responses and autophagy in HeLa cervical cancer cells. Detailed characterization of the mitochondria in the treated cells revealed shifted abundance of the two optic atrophy protein 1 (Opa1) isoforms, disturbed morphology, and dissipated membrane potential, leading to PTEN-induced kinase-1 (PINK1) and microtubule-associated protein 1 light chain 3-II (LC3-II) accumulation as a molecular signature of mitophagy. Furthermore, an acute treatment with lamellarins also modulated cellular autophagy flux as evidenced by elevated LC3-II levels, LC3 puncta formation, and p62 degradation. Surprisingly, clustered regularly interspaced short palindromic repeats (CRISPR)-based suppression of autophagy transiently affected the number of apoptotic cells induced by these compounds. Our findings illustrate the potential of these alkaloids for further development into prospective anti-cancer agents.


Assuntos
Alcaloides/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pirróis/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Células HeLa , Humanos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
6.
J Org Chem ; 86(21): 14883-14902, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34436897

RESUMO

A modular hybrid strategy has been developed for the diversity-oriented synthesis of lamellarins/azalamellarins. The common pentacyclic pyrrolodihydroisoquinoline lactone/lactam core was formed via the Michael addition/ring closure (Mi-RC) and the copper(I) thiophene-2-carboxylate (CuTC)-catalyzed C-O/C-N Ullmann coupling. Subsequent direct functionalization at C1, DDQ-mediated C5═C6 oxidation, and global deprotection of all benzyl-type O- and N-protecting groups furnished the desired lamellarins/azalamellarins. The late-stage functionalization at C1 provided a handle to accommodate a wider scope of functional groups as they need to tolerate only the DDQ oxidation and global deprotection. Moreover, with the C1-H pyrrole as the late-stage common intermediate, it was also possible to divergently exploit not only its nucleophilic nature to react with some electrophilic species but also some transition-metal-catalyzed cross-coupling reactions (via the intermediacy of the C1-iodopyrrole) to incorporate diversity at this position. Overall, this strategy simplifies the preparation of lamellarins/azalamellarins; including the Mi-RC, these C1-structurally diverse analogues could be prepared efficiently in 6-7 steps from the easily accessed 1-acetoxymethyldihydroisoquinoline and ß-nitrocinnamate. Some selected azalamellarins were evaluated for their inhibitory effect against HeLa cervical cancer cells. An acute induction of intrinsic apoptosis was detected and may lead to growth suppression of or cytotoxicity against cancer cells.


Assuntos
Pirróis , Elementos de Transição , Apoptose , Células HeLa , Humanos , Lactamas , Pirróis/farmacologia
7.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912914

RESUMO

Laceyella tengchongensis BKK01 is a thermophilic bacterium isolated from municipal solid waste. The genome of L. tengchongensis BKK01 includes a gene putatively encoding gramicidin S synthase. Gramicidin S has antibiotic activity against some bacteria and fungi. The newly sequenced 3.44-Mb draft genome of L. tengchongensis BKK01 will shed some light on the biosynthesis of gramicidin S.

8.
Bioorg Med Chem Lett ; 30(1): 126776, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704206

RESUMO

A series of novel bis(arylsulfonyl)dihydroimidazolinones with different aryl substitution patterns were readily synthesized and evaluated for their antitumor activities. Some of the newly synthesized compounds exhibited cytotoxicity at micromolar range against multiple cancer cell lines, including A549, HepG2, HuCCA-1, and MOLT-3. The most potent analogue contained pentafluorobenzenesulfonyl groups, which could be chemically elaborated to serve as a potential pharmacophore.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Imidazolinas/síntese química , Imidazolinas/farmacologia , Células A549 , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Relação Estrutura-Atividade
10.
J Biol Chem ; 292(28): 11792-11803, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28536268

RESUMO

DNAJB12 (JB12) is an endoplasmic reticulum (ER)-associated Hsp40 family protein that recruits Hsp70 to the ER surface to coordinate the function of ER-associated and cytosolic chaperone systems in protein quality control. Hsp70 is stress-inducible, but paradoxically, we report here that JB12 was degraded by the proteasome during severe ER stress. Destabilized JB12 was degraded by ER-associated degradation complexes that contained HERP, Sel1L, and gp78. JB12 was the only ER-associated chaperone that was destabilized by reductive stress. JB12 knockdown by siRNA led to the induction of caspase processing but not the unfolded protein response. ER stress-induced apoptosis is regulated by the highly labile and ER-associated BCL-2 family member BOK, which is controlled at the level of protein stability by ER-associated degradation components. We found that JB12 was required in human hepatoma cell line 7 (Huh-7) liver cancer cells to maintain BOK at low levels, and BOK was detected in complexes with JB12 and gp78. Depletion of JB12 during reductive stress or by shRNA from Huh-7 cells was associated with accumulation of BOK and activation of Caspase 3, 7, and 9. The absence of JB12 sensitized Huh-7 to death caused by proteotoxic agents and the proapoptotic chemotherapeutic LCL-161. In summary, JB12 is a stress-sensitive Hsp40 whose degradation during severe ER stress provides a mechanism to promote BOK accumulation and induction of apoptosis.


Assuntos
Apoptose , Carcinoma Hepatocelular/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Substituição de Aminoácidos , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Células COS , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Proteínas de Choque Térmico HSP40/antagonistas & inibidores , Proteínas de Choque Térmico HSP40/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Interferência de RNA/efeitos dos fármacos , Receptores do Fator Autócrino de Motilidade/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Tiazóis/farmacologia
11.
FEBS Lett ; 591(2): 406-414, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28027394

RESUMO

Inositol-requiring enzyme 1 (IRE1) is a conserved sensor of the unfolded protein response that has protein kinase and endoribonuclease (RNase) enzymatic activities and thereby initiates HAC1/XBP1 splicing. Previous studies demonstrated that human IRE1α (hIRE1α) does not cleave Saccharomyces cerevisiae HAC1 mRNA. Using an in vitro cleavage assay, we show that adenine to cytosine nucleotide substitution at the +1 position in the 3' splice site of HAC1 RNA is required for specific cleavage by hIRE1α. A similar restricted nucleotide specificity in the RNA substrate was observed for XBP1 splicing in vivo. Together these findings underscore the essential role of cytosine nucleotide at +1 in the 3' splice site for determining cleavage specificity of hIRE1α.


Assuntos
Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células COS , Chlorocebus aethiops , Citosina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Humanos , Conformação de Ácido Nucleico , Nucleotídeos/metabolismo , Mutação Puntual/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
12.
Am J Physiol Lung Cell Mol Physiol ; 311(3): L550-9, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27402691

RESUMO

Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects. At least 30% of CF patients are heterozygous for the F508del mutation with the other allele encoding for one of many different rare CFTR mutations. Treatment of heterozygous F508del patients with VX-809 and VX-770 has had limited success, so it is important to identify heterozygous patients that respond to CFTR modulator therapy. R117H is a more prevalent rare mutation found in over 2,000 CF patients. In this study we investigated the effectiveness of VX-809/VX-770 therapy on restoring CFTR function in human bronchial epithelial (HBE) cells from R117H/F508del CF patients. We found that VX-809 stimulated more CFTR activity in R117H/F508del HBEs than in F508del/F508del HBEs. R117H expressed exclusively in immortalized HBEs exhibited a folding defect, was retained in the ER, and degraded prematurely. VX-809 corrected the R117H folding defect and restored channel function. Because R117 is involved in ion conductance, VX-770 acted additively with VX-809 to restore CFTR function in chronically treated R117H/F508del cells. Although treatment of R117H patients with VX-770 has been approved, our studies indicate that Orkambi may be more beneficial for rescue of CFTR function in these patients.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Quinolonas/farmacologia , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Avaliação Pré-Clínica de Medicamentos , Humanos , Mutação de Sentido Incorreto , Dobramento de Proteína/efeitos dos fármacos , Deleção de Sequência
13.
Mol Biol Cell ; 24(19): 3016-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23924900

RESUMO

Cystic fibrosis (CF) is a fatal genetic disorder associated with defective hydration of lung airways due to the loss of chloride transport through the CF transmembrane conductance regulator protein (CFTR). CFTR contains two membrane-spanning domains (MSDs), two nucleotide-binding domains (NBDs), and a regulatory domain, and its channel assembly requires multiple interdomain contacts. The most common CF-causing mutation, F508del, occurs in NBD1 and results in misfolding and premature degradation of F508del-CFTR. VX-809 is an investigational CFTR corrector that partially restores CFTR function in people who are homozygous for F508del-CFTR. To identify the folding defect(s) in F508del-CFTR that must be repaired to treat CF, we explored the mechanism of VX-809 action. VX-809 stabilized an N-terminal domain in CFTR that contains only MSD1 and efficaciously restored function to CFTR forms that have missense mutations in MSD1. The action of VX-809 on MSD1 appears to suppress folding defects in F508del-CFTR by enhancing interactions among the NBD1, MSD1, and MSD2 domains. The ability of VX-809 to correct F508del-CFTR is enhanced when combined with mutations that improve F508del-NBD1 interaction with MSD2. These data suggest that the use of VX-809 in combination with an additional CFTR corrector that suppresses folding defects downstream of MSD1 may further enhance CFTR function in people with F508del-CFTR.


Assuntos
Aminopiridinas/administração & dosagem , Benzodioxóis/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Dobramento de Proteína/efeitos dos fármacos , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos , Mutação de Sentido Incorreto , Conformação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/genética , Transdução de Sinais/genética
14.
Cell Struct Funct ; 37(2): 177-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23018488

RESUMO

Misfolded proteins in the endoplasmic reticulum (ER) are dislocated out of the ER to the cytosol, polyubiquitinated, and degraded by the ubiquitin-proteasome system in a process collectively termed ER-associated degradation (ERAD). Recent studies have established that a mammalian ER-localized transmembrane J-protein, DNAJB12, cooperates with Hsc70, a cytosolic Hsp70 family member, to promote the ERAD of misfolded membrane proteins. Interestingly, mammalian genomes have another J-protein called DNAJB14 that shows a high sequence similarity to DNAJB12. Yet, very little was known about this protein. Here, we report the characterization of DNAJB14. Immunofluorescence study and protease protection assay showed that, like DNAJB12, DNAJB14 is an ER-localized, single membrane-spanning J-protein with its J-domain facing the cytosol. We used co-immunoprecipitation assay to find that DNAJB14 can also specifically bind Hsc70 via its J-domain to recruit this chaperone to ER membrane. Remarkably, the overexpression of DNAJB14 accelerated the degradation of misfolded membrane proteins including a mutant of cystic fibrosis transmembrane conductance regulator (CFTRΔF508), but not that of a misfolded luminal protein. Furthermore, the DNAJB14-dependent degradation of CFTRΔF508 was compromised by MG132, a proteasome inhibitor, indicating that DNAJB14 can enhance the degradation of a misfolded membrane protein using the ubiquitin-proteasome system. Thus, the mammalian ER possesses two analogous J-proteins (DNAJB14 and DNAJB12) that both can promote the ERAD of misfolded transmembrane proteins. Compared with DNAJB12 mRNA that was widely expressed in mouse tissues, DNAJB14 mRNA was expressed more weakly, being most abundant in testis, implying its specific role in this tissue.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/química , Dobramento de Proteína , Sequência de Aminoácidos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Humanos , Cinética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Chaperonas Moleculares , Dados de Sequência Molecular , Células NIH 3T3 , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
15.
FEBS Lett ; 584(14): 3203-8, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20541549

RESUMO

The unfolded protein response is a mechanism to cope with endoplasmic reticulum stress. In Saccharomyces cerevisiae, Ire1 senses the stress and mediates a signaling cascade to upregulate responsive genes through an unusual HAC1 mRNA splicing. The splicing requires interconnected activity (kinase and endoribonuclease (RNase)) of Ire1 to cleave HAC1 mRNA at the non-canonical splice sites before translation into Hac1 transcription factor. Analysis of the truncated kinase domain from Ire1 homologs revealed that this domain is highly conserved. Characterization by domain swapping indicated that a functional ATP/ADP binding domain is minimally required. However the overall domain compatibility is critical for eliciting its full RNase function.


Assuntos
Endorribonucleases/metabolismo , Fatores de Transcrição/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Endorribonucleases/genética , Fosfotransferases/genética , Fosfotransferases/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...